88. Assume the thickness of the layer is \(d \). So the mass is \(M = \rho \pi \frac{4}{3} (R_E - d)^3 \).

Also \(a_E = \frac{GM}{(R_E - d)^2} = \frac{4\pi}{3} \times G\rho (R_E - d) \), so

\[
d = \frac{3a_E}{4\pi G \rho} - R_E = \frac{3(10.0 \text{ m/s}^2)}{4\pi(6.67 \times 10^{-11} \text{ N m}^2/\text{kg}^2)(5.52 \times 10^3 \text{ kg/m}^3)} - 6.38 \times 10^6 \text{ m} = 1.04 \times 10^3 \text{ m} = \boxed{104 \text{ km}}.
\]

89. (a) \(U_{\text{int}} = - \frac{Gm_1 m_2}{r_{12}} - \frac{Gm_1 m_3}{r_{13}} - \frac{Gm_2 m_3}{r_{23}} \)

\[
U_{\text{int}} = - (6.67 \times 10^{-11} \text{ N m}^2/\text{kg}^2) \left[\frac{(1.0 \text{ kg})^2}{0.80 \text{ m}} + \frac{(1.0 \text{ kg})^2}{0.80 \text{ m}} + \frac{(1.0 \text{ kg})^2}{0.80 \text{ m}} \right] = -2.5 \times 10^{-10} \text{ J}.
\]

(b) From symmetry, the force at the center is zero. So the force per unit mass is also \(0 \).

90. (c).

91. (c), according to Kepler’s second law.

92. (a) \(0 \), because the direction of the force and the displacement (velocity) are perpendicular and work is equal to \(W = Fd \cos \theta (\cos 90^\circ = 0) \).

(b) \(\text{No} \). When the person comes down, it is still a free fall.

93. (a) Rockets are launched \textbf{eastward} to get more velocity relative to space because the Earth rotates toward the east.

(b) The \textbf{tangential speed of the Earth is higher in Florida} because Florida is closer to the equator than California hence a greater distance from the axis of rotation. Also, the launch is over the ocean for safety.

94. (a) \(\text{No} \), you cannot speed up in the same orbit with one rocket burst. Speed is dependent on orbital radius. Once you speed up, you will be at a different orbit of different radius.

(b) \textbf{Decreasing the orbital radius} to increase speed and then increasing the orbital radius to catch the equipment.